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FOREWORD

A major portion of the work described in this report
was carried out by Lockheed Missiles & Space Company for
the Marshall Space Flight Center under Contract NAS8-20387.

This report is Volume I of three volumes which comprise
the Final Report under Contract NAS8-20387, as follows:

Volume I - '"Synthesis of Structural Damping," b
C. S. Chang and R, E. Bieber (LMSC
HREC A783975)

Volume II - ™Nonlinear Dynamic Analyses,"
by R. O. Hultgren (LMSC/HREC A783963)

Volume III - "A Study of Hereditary Springs in Relation
to Hysteretic Damping," by G. A, Ramerez
(LMSC/HREC A783201)
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SUMMARY

For a structure exhibiting hysteresis behavior, the force-deflecfion
rclationship under arbitrary loading can be derived in terms of four physical
properties. This relationship relies upon geometrical similarities between
the loading and the unloading branches of the hysteresis loop and a genetic
curve obtained by considering the rate of energy dissipation during steady-
state oscillations. A damping law is introduced to obtain results which show
agreement with experimental data for a 1/5-scale structural model of the

Saturn I launch vehicle.
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Section 1
INTRODUCTION

A common cause of difficulty in obtaining consistant structural
damping data is their dependency on the amplitude of vibration. An acknowl-
edged source of nonlinearity is the hysteretic relationship between force and

deformation.

Caughey (Reference 1), studied a linear hysteresis damping model
which can be made to satisfy the requirement that the energy dissipation
rate be independent of the frequency in steady-state vibrations. In so doing,
however, one finds that his model displays a force-displacement relationship
that varies with the frequency of oscillation. The current study extends the
bilinear hysteresis model of Caughey (Reference 2) to the curvelinear case

in the manner of Whiteman (Reference 3) who used it for material hysteresis.

This investigation is restricted to applications in which the structure
can be characterized by individual vibration modes, and where the repre-
sentation of each mode by a one-degree-of-freedom system is essentially
correct. The hysteresis relationship itself, however, is‘quite general and

may be used in other applications.
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Section 2
HYSTERETIC FORCE-DEFLECTION RELATIONSHIP

A model consisting of a large number of elastoplastic elements (i.e.,
springs in scrics with Coulomb friction units) can be used to construct the
essential properties of a hysteretic force-deflection relationship for studying
structural damping. This model, outlined by Timoshenko (Reference 4, 1940),
was used by Whiteman (References 3 and 5,1957), in connection with his study
of metal fatigue, and later by Rosenbluth and Herrera (Reference 6, 1964),
who cited Tanabashi and Keneta (Reference 7, 1962).

The mathematical model of hysteresis has the following properties:

e Variation of the force, F, orthe displacement, X, between
fixed limits (F, X) and (-F, -X) follows two distinct paths which
intersect at the limiting points, see Figure 1.

e Using the sign convention of Figure 1, the hysteresis loop is
always traversed in the clockwise direction, and the area
enclosed by the loading and the unloading branches of the
hysteresis loop represents D o’ the amount of energy dissi-
pated per cycle.

e The locus of (F,X) for hysteresis loops of various amplitudes
coincides with _the initial loading curve in the positive direction,
the locus of (-F, -X) coincides with the initial loading curve in
the negative d1rect10n

® The loading branch of the hysteresis loop between (F, X) and
(-F, -X) is geometrically similar to the initial positive loading
curve but is scaled in both directions, and is displaced from
the origin so that it begins at (-F, -X) and ends at (F, X) (see
Equation 6),. The construction of the unloading branch is
similar {see Equation 8).

® The relationship between force and displacement amplitudes,
i.e., the shape of the F vs X curve, can be determined by the
manner in which D is dependent upon X. From geometrical

considerations it may be shown that the area between the Fvs
X curve and the straight line from the origin to the point (F, X)
is 1/8 D . Referring to Figure 2, it is seen that
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Figure 2 - Derivation of the Equation of (f, X)
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X_
D -_—f FdX'—FXy
o] 2

O

00| v

and, corresponding to a small change AX,

. X+0X 1 - o _
§D0+§AD0 = f F(X)dX—i-(F+AF)(X+AX).

O

1 = 1
§4D, = F -3

I

]
ax 4 dx (1)

The initial condition is F(0)

n
(=]

The general solution of Equation (1) can be written in the form

F(X) = K X +{(X); (2)

where the term KOS-( is the complimentary solution, and

is independent of Do’ while £(X) is the particular solution with
f(0) = 0. (3)

Let Xp be the point where

alo
xll*rjl
'

= 0. (4)

For displacements greater than '}-(p,

|

F = (5)
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e The loading path from (-F, -X) to F, X) on the hysteresis
loop is described by the equation

1 - X+X X+X
E(F+F)=Ko(z)+f(2)' (6)

or equivalently,

s K X 42 f(-)—(——gz) LX) (7)

similarly, the unloading branch of the loop is described
by the equation

F o= KX -215% +4x). (8)

e The constant K0 in the solution of F(X) may be identified

with the small-amplitude natural frequency of the corre-
sponding linear, undamped system.

Experimental data have been collected on the bending variations of a
structural model of the Saturn I launch vehicle*. The energy dissipated per
cycle, Do’ for an extended range of response amplitudes is shown in Figure
3 for the second free-free mode. These experimental results lead to the

following general form for D_:

= 0, X< X ;
0 — o]
= J (X-X )", X <X<X;
o n o o— " —"p
= J (X -X)"+4F (X-X), X <X
o n(p o) p( p) p— (9)

where all quantities are non-negative, and X0 is that displacement amplitude
below which hysteresis damping is zero; n is an exponent and is not neces-

sarily an integer; Jn is a constant of proportionality. Two special cases

*
Obtained under Contract NAS8-20088, "Experimental Damping Studies,"

by Lockheed Missiles & Space Company, Huntsville Research & Engineering
Center.
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Figure 3 - Measured Damping Law for 1/5-Scale Model of Saturn I Vehicle
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%*
of interest are: (a) n=2.0 and X°> 0, so that

o = 0 0<X< X ;
- =70
- 7 2 N X
D, = J,(X-X), xof_xgxp;
—— 2 — — j— —
D, = JZ(XP-XO) +4Fp(x-xp), pr_X, (10)

and (b) n > 2.0, X0= 0, so that

(o] n P

= J_X", 0<X<X;
X <X. (11)

=i

— n — —
= J +4F (X-X),
np P( P) P
For case (a), when X>>XO, the rate of dissipation, Do’ is nearly propor-
tional to the peak stored energy and independent of frequency, approaching
the case of '"linear structural damping' that one often encounters in the
structural vibration literature,; while case (b) bears a close similarity with

material damping laws (Reference 8).

The solution of Equation (1) for case (a) above is

F = KX 0<X< X ;
o _ -7 =""0
= ToT R e T _ T .
F = Kox-szm§+J2(x X ) xogxgxp,
(o]
F = F(X), X <X. 12
(p) p< (12)

The point fp may be determined by differentiating Equation (12) and
setting the result to zero, and is given by the expression
KO/JZ

)—(p = € Xo (13)

*
. The case Xo= 0 must be ruled physically impossible since it leads to a

dynamic system with an infinite small-amplitude natural frequency.
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For typical structures, the exponent KO/J2 is usually very large, so that
the assumption :

X >X
p

can be made without loss of generality.

ll("
H(X, X) = F-K X (14)

Substituting Equations (7), (8) and (12) into Equation (14), the following

are obtained

for X< X, H(X, X) = O0; (15)

and for Xos X SXP.

H(X,X>0) = szm%’qz(x-xo), 5— <X (15a)
H(X, X >0) = 2J2<—sz>ln_}§;f 23, (X;X-x())
+J2}_(ln-}—()—(—o—J2(X-Xo), fzxzxo; (15b)
H(X, X <0) = -szfn—;(—io+ I,&-X ), XT;_—}‘gxo; (15¢)
H(X,X<0) = -ZJZ(i£X>In>§)E +2J2(X_2x>-xo
- szm%uz()‘c-xo), %—’fzxo. (15d)
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Similarly, for case (b), D = Jan,
F-KX-+ g %1 2, X<X 16
= o 2 m-2) ’n , N>c, po ( )
where: 1
4K (n-2) n-2
xp K n(n-1) (17)
n
— _l e
. 1 n X +x\° oL
H(X,X>0) = ‘_Z-(n-Z) Jn< 5 ) 4(n Z)J (X) (18)
and
= -1
= 1 n X-x\" 1
H(X,X<0) = 3 o3 Jn( 5 ) iy (n 2) J (X) (18a)

Equations (15) through (18a) will be needed for the solution of vibration

problems in the following sections.

Figure 4 shows a typical relationship between F and X for both cases

(a) and (b) of the above discussion.
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Figure 4 - Typical F vs X Curve
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Section 3
SINUSOIDAL FORCED VIBRATION

For periodic excitations and for free vibration decay, as well as for a
class of random excitations, where the solutions are expected to be similar
to those for a system with small nonlinearities in viscous damping and in the

restoring force, approximate solutions can be derived.

The steady-state equation of motion of a single-degree-of-freedom

system can now be written:

m¥X + cX + KOX + H(X, X) = Po coswt (19) .

where m is the mass, ¢ the viscosity coefficient, Po the forcing amplitude,

and w the forcing frequency. Let

K
0 o P, (20)
m o
and
c _ .
An approximate solution of the form
X = X cos(wt-%) : (22)
may be obtained in the following way:
Expand H(X, }.() into a Fourier series and retain only the fundamental
frequency components,
H(X, X) = I, cos(wt -) + I, sin(wt -) (23)

11
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with

1 27 /w
I, = = / H[)—(- cos(mt - ), vX sin(wt ~¢)]cos(a)t - ) wdt (24)

O

and

i

1 27 /W _ _
I = / H[X cos(wt - ), wX ﬁin(’nt-'b)] sin(wt - ¢) wdt
[9]

27/

- %= H(X,X) X o dt (25)
o

The last integral is obviously the energy dissipated over a cyle of vibration,

so that

)

(26)

[
(o]
{
)
:><||
310

Substituting Equations (20) to (26) into Equation (19) and requiring the
coefficients of cos(wt - ) and sin(wt - $) to vanish individually, the following
equations are obtained for amplitude and phase responses of the steady-

state problem:

1:;) 1 - ——wz + 1_ = cosd, (27)
o w K X
fe) 0
and '
Koi W Do
26— 4+ ——=—| = sind . (28)
P W =2
o o KOX T

The effects of hesteresis damping are reflected in the presence of L inEquation
D
0

(21) and the presence of the termm in Equation (28). The quantity Ilcauses
o

the frequency of phase resonance (the ® at which ¢ = 7 /2) to shift away from

w/(oo = 1.0. Since Il is in general a function of the response amplitude. the

12
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shift in peak response natural frequency is a function of the excitation
amplitude also. In the limiting case of zero forcing amplitude, (.o/u)o
achieves the value of unity. To show the effect of D more directly, let Dc

be the dissipation per cycle due to viscous damping, then

'Dc = cwfzw.
and
;(_02 = __D_C__
W 47 To
where
T = —l-ma)zfz
o 2

is the peak kinetic energy of the system. Equation (28) may now be written

in the form

Koi w2 D D_
— [& + — = sind (29)
Po wi e To KOX 27r

showing the respective roles of D which is an explicit function of w, and

Do' which, on the contrary, is independent of w.

Squaring Equations (27) and (28) and adding, one obtains

=\2 2 D 2
KX R W £t
B 1- -5 + — w K }—{Z = 1;

o W KOX ° o™ T

(o)
or,
2 2 2]1/2

(02 Po Po W Do
-—2' = 14+ py + poy - 24.5"*'—:7— . (30)
® K X \K X o KX'n

o o o

13
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Since Do is independent of frequency, the right-hand side of Equation (30)

will be independent of frequency if viscous damping is absent. Therefore,
for the case{=0,
2
2 I D
W 1 1 2 o
= |1+ =\t =4YP - 5 . (31)
2 2
w’ KX/"KX o y2 2

Peak response, X = j—(_m, is found where the radical in Equation (31) vanishes,

and
2 I.(X )
2 = 1M (32)
- K X
0== o"'m
X=X

m

Therefore, peak response occurs at the same frequency at which the response
lags the force by a phase angle of 7 /2, if damping is entirely due to hysteresis

loss. Obviously, the addition of viscous damping causes the separation of

these frequencies.

At the peak response frequency,

Do(i—m)
P =% (33)
m

which may be regarded as a relationship to determine either }—fm from D

or vice versa, for given Po' The nonlinear nature is quite obvious since in

general D0 is not proportional to the square of the response amplitude.

Substituting Equation (33) into Equation (32), the peak response fre-

quency 18 found in terms of Il(xm)’ Do(Xm), and Po'

002 7rpoll(xm)
o' _|_ o' %¥m
°X=X

m

14
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As an example of the sinusoidal forced vibration solution, the force-
deflection relationship of Equations (15) through (15d) (case (a)) are used to
obtain the frequency and phase responses of a dynamic system described
by Equation (19), with c=0.

It is convenient to introduce the parameter Xs z PO/Ko to describe the

forcing amplitude, and @ = 2 JZ/K() for a measure of the damping capacity.

For a= 0.1, amplitude response curves are shown in Figure 5 for
several values of Xs' In the lower region of the figure, where 5(_3 Xo’ the

system is undamped.
Typical phase response curves are shown in Figure 6.

For each value of @, the peak response amplitude is a nonlinear function
of the forcing amplitude. This is evidenced in the set of curves shown in

Figure 7. The corresponding shift in frequencies is shown in Figure 8.

Experimental data on peak response and on frequency shift corresponding
to the energy dissipation curve of Figure 3 for the Saturn I model are also

plotted in Figures 7 and 8.

Similarities between experimental data and theoretical results indicate
that the inherent nonlinearity of the hysteretic force -deflection relationship
can be responsible for the observed nonlinear response.
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Figure 5 - Forced Vibration Amplitude Response Curves
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Figure 7 - Peak Response Amplitude vs Force Amplitude
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Section 4

FREE VIBRATION

The equation of motion for the free vibration with both viscous and
hysteretic types of damping is formally obtained by setting the excitation to

zero in the equation for the steady-state

2 1

X+ ZQwOX +a)oX t H(X, X) = 0. (35)

A solution of the form

X(t) = X(t) cosEoot - 0(t)] (36)

may be obtained by the method of Kryloff and Bogoliuboff (Reference 9).

The time-varying functions X(t) and @(t) are defined such that when
cos[wot - G(t)] = + 1, the expression (36) will yield the correct values of X(t),
and such that between successive peaks of X(t), both X(t) and §(t) vary slowly

and monotonically.
Imposing upon the two introduced functions X and @, the relationship

X cosV + 6K sin¥ = 0, (37)

where
‘l’ = O)Ot - 0)

and substituting the results into the original equation of motion, two first

order equations are obtained.

H sin¥, (38)

= = . 2y
X+2§ons1n‘l’- —

20
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and
. . H
6 = L, sin2¥ + ———mwo)—( cos¥ . (39)
A first order approximate solution of Equation (39) is
6= ot. (40)
Let
W = 0 - 6.
so that :
Vo= oot (41)

and expand the function H sin¥ into a Fourier series

©
H sin¥ = A+ :>: A, cosi¥ + B, sini¥ . (42)
i=1

The coefficient A0 is given by the expression

27

D
_ 1 1 = 5 . _ 1 _ . )
A = T3 Yy H(X cos¥, w X gin¥) sin¥ d¥ = meo I e d ma ¥ (43)

o

The solution X(t) may be obtained by inifegration of both sides of Equation (38),

and can be put into the following form:

X(t + 27 /0p) 1 (44)
— = 1-5=(D_ +D
X(t) 2 T, ( c o)
The logarithmic decrement is given by
X (t + Zﬂ/a)l) 1 (45)
6 = In — = (D._+D)) 45

21
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In general, Do is not proportional to To’ so that § is not a constant for

the decay of free vibrations of structures with hysteresis damping.

The ffequency, W) is still to be determined. Referring to Equation
(41), this amounts to finding 0, which is the average value of the quantity
(Qwo sin2¥ - H cos‘l’/mwof) and is just the constant of the Fourier series
expansion of the second term

2n

s _ 1 1
6_.2_1'-—1’;(:):}_?_ H cos¥ d¥

0

According to Equations (24) and (41), this is equivalent to

w_ -w, = 1 1 () 46
o 1 2mao X (46)
or,
w‘;‘ Il(}?)
-5 = 1+ y (46a)
w m
O (o)

if a small term, 02, is omitted.

Equation (46a) is derived to show the similarity with Equation (33)
which is an expression for the forced vibration natural frequency. For com-

putational purposes, however, Equation (46) should be used.

22
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Scction 5
RANDOM VIBRATION RESPONSE

Because of the current interest in random vibrations and their effects
on acrospacc structures, the mean-square response of a hysteretically
damped system to '"white noise' excitation will be investigated. Unfortunately
exact solutions for the mean-square are not available for the hysteresis loops
of interest. An approximate solution will be obtained following the method of

equivalent linearization employed by Caughey (Reference 10).

The equation of motion is of the same form as Equation (19) i.e.,

2
o

1 )
[x s H(X,X)] = N(t), (47)

'}E+B)'( +w

where N(t) is ""white noise' with spectral intensity ¢. It is convenient, to

rewrite Equation (47) as,

2

eqx + A(X, X) = N(t). (48)

X + ﬂeqX +w
The method of solution is to minimize the mean-square error, EAZ
with respect to weq and Be . The known mean-square response associated
with Equation (48), ignoring the A term, then becomes the approximate

solution of Equation (47), i.e.,

2
Ex? - o212 (49)
2B w
eq eq

Solving for the error A(X, X),

wi
)X +— H; (50)
q K,

A = (ﬂ-ﬁeq)fc+(wi —wz

23
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2 2
EAZ-E(ﬂ-ﬂ )}'c+(w -co )x+?-°-H 51
- eq Ko . ( )
Minimizi ith tt wz d ield
1n1m1?1ng with respect to & an Beq yields,
Wl = Wl 1y B (52)
d K EX
o
wi EXH
B = ﬁ +'—_—'" . (53)
°q K _EX°
o
. . 2 s 2
Solving Equation (49) for GX and normalizing by o
02
_?25 = 1 —— (54)
S @eq/ﬁ) (weq/wo)
where 0’2 is the small vibration mean-square response,
2 rd
g = —> . (55)
° 28w
o
Representing X(t) by,
X(t) = X(t) cos(w, ot - 1)) . (56)

where X and ¢ are slowly varying random envelope and phase functions
respectively; then the expectations E X H, EXH, E X2 and E 5(2 can be solved
for m terms of conditional expectations E[XH IX <X ] E[XHlX >X ] ------
Ex%|X <X o) [E x2|x>x ].

24
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Then,
EXH = E =E[XHI)? <X ), + E(xH[X > }?p]pZ-
EXH = E[E[XH|X <X Jp, + E[XHIX >X Jp
- h P2 (57)
Ex? = E[E[X Iic‘ < }_(p]pl + E[lef >fp]p2
.2 ) g 2l = om 3
ex’ - E[Efk X < X Jp, + E[X % >Xp]p2d
where:
p; = PR[X<X ] ,
_ P (58)
= P >
As assumed earlier, X << ip so that,
p, S 0. (59)
Under this restriction the necessary conditional expectations are,
_ X1
EXH[X] = —— .
. -0, X I,
E[xH|X] = ——=,
_o (60)
E[X%|X] = %—
E[).(ZB-(] = _u)_iﬂf
= =3 ,

where: I1 and I2 are given by Equations (24) and (25).

If the nonlinearities are small then it is expected that X(t) will be nearly

Gaussian so that the probability density function of X can be approximated by,

2 2
_ F -X"[20
pX) = % e x, (61)
7%
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and hence =2
) P_, _ e—X /GXZ _
EXH =-£;z X Il (X) dX ,
X
°.X
. ®, P, _ Rf2dd
EXH %-—3 X°1,(X) € dX , (62)
20
X
o
EX - x ’
A 2 2
EX =z (x)equ .

The solution of Equations (52), (53) and (54) has been obtained for case

(b), i.e., for a structure which follows the hysteresis damping law of

Equation (11).

J = n-1 J
: _ 'n n X+X "n n gn-l
H(X,X>0) = - > o3 (——2 ) t o X, \ sz
X<X
. J % _ w1l 7 L P
ax k<o = pg (BE) -2 e

As expected, both ooi and ﬂeq are functions of the mean-square response,

ai, and are given by,

(3.0°2 /& Moy /o )" %0 p_I(n/2)

(63)
202 (h_2)r

wF ¥ = 1+
eq’ o

(0.2 /K N0y /o)™ 02"/ ?M(n/2)

Beg/B = 1+ 57 (Bl g oy o/og) (64)

26
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where:

n

4 1
P =[ (1 - cos¥)" ™" cosV a¥

o

The simultaneous solution of Equations (63) and (64) together with
Equation (54)yi«-l(!s the mean-square r«‘..-xpnnsvoi/d(z) versus the nonlinear
paramecter Jnog-z/Ko. A numerical solution has been carried out and
results are shown in Figure 9 for ﬂ/(.oo= .01 and several values of n between
2.1 and 3.0. For small nonlinearities there is a beneficial effect due to
hysteresis damping. For large values of the nonlinear parameter the mean-
square response increases and eventually exceeds the linear case (GX/00>1);
however, for this range of nonlinearities the approximate solutions would

require additional verification.
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Figure 9 - Mean-Square Response vs Nonlinear Parameter
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Section 6
CONCLUSIONS

It has been delineated that the presence of hysteresis damping implies
a nonlincar force-deflection relationship. Analytical consistency of structural
vibrations with hysteresis damping can be achieved if this nonlinearity is
preserved in the dynamic equations. The actual derivation of equations and

their approximate solutions presents no major difficulties.

The proposed hysteresis model thus affords additional means for

analyzing the dynamic behavior of complex structures,
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